
Introduction to Subversion

Getting started with svn

Matteo Vescovi
19/02/2010



Agenda

 A little bit of theory
• Overview of Subversion
• Subversion approach to Version Control

 Using Subversion
• Typical subversion usage and workflow
• Examples using mock repository

 Branching and merging
• Creating branches, keeping branches in sync, merging back
• Backing out merges
• Resurrecting deleted items
• Tagging



What is subversion?

 Subversion is a free/open source version control 
system. That is, Subversion manages files and 
directories, and the changes made to them, over 
time.

 Some version control systems are also software 
configuration management (SCM) systems. These 
systems are specifically tailored to manage trees of 
source code and have many features that are specific 
to software development—such as natively 
understanding programming languages, or supplying 
tools for building software. Subversion, however, is 
not one of these systems.



Subversion architecture

 Repository can use DB or 
FS as back-end

 SVN supports various 
protocols (file://, http://, 
https://, svn://, etc.)

 Multiple language bindings 
are available

 Users interact with 
subversion through a client 
application
• CLI client: svn
• GUI clients (on Windows: 

TortoiseSVN, cross-
platform: RapidSVN)



Fundamental problem VCS solve

 Version Control Systems 
solve the following 
fundamental problem:
• Harry and Sally decide to 

edit the same file A
• Harry and Sally 

concurrently make 
changes to A, resulting in 
A’ and A’’

• Harry commits A’ to 
repository before Sally

• Sally commits A’’ to 
repository, overwriting 
Harry’s changes (A’ is lost, 
overwritten by A’’)



Lock-Modify-Unlock solution

 Harry must “lock” a file 
before he can begin making 
changes to it.

 If Harry has locked a file, 
Sally cannot also lock it, 
and therefore cannot make 
any changes to that file.

 All Sally can do is read the 
file and wait for Harry to 
finish his changes and 
release his lock.

 After Harry unlocks the file, 
Sally can take her turn by 
locking and editing the file.



Copy-Modify-Merge solution

 Harry and Sally each create 
working copies of the same 
project, copied from the 
repository.

 They work concurrently and 
make changes to the same 
file A within their copies.

 Sally saves her changes to 
the repository first. When 
Harry attempts to save his 
changes later, the 
repository informs him that 
his file A is out of date (A in 
the repository has changed 
since he last copied it)



Copy-Modify-Merge solution (2)

 Harry asks his client to 
merge any new changes 
from the repository into his 
working copy of file A.

 If Sally's changes don't 
overlap with Harry’s own, 
changes are integrated 
automatically. Harry can 
commits his working copy 
back to the repository.

 If Sally's changes do 
overlap with Harry's 
changes, there is a conflict. 
Changes must be integrated 
manually before committing.



Obtaining a working copy of the repository

 A Subversion working copy is an ordinary directory 
tree on your local system.

 A working copy also contains some extra files, 
created and maintained by Subversion, to help it 
carry out these commands. In particular, each 
directory in your working copy contains a 
subdirectory named .svn, also known as the working 
copy's administrative directory.

 To get a working copy, you check out some subtree 
of the repository.

$ svn co http://svn.apache.org/repos/asf/subversion/trunk subversion



Pushing and pulling changes from repository

 Your working copy is your own private work area: 
Subversion will never incorporate other people's 
changes, nor make your own changes available to 
others, until you explicitly tell it to do so.

 To push your changes to the repository, you can use 
Subversion's svn commit command:

 To pull changes from the repository into your working 
copy, use svn update command:

$ svn commit README -m “Fixed a typo in README.”

$ svn update



Revisions

 An svn commit operation publishes changes to any 
number of files and directories as a single atomic 
transaction.

 Each time the repository accepts a commit, this 
creates a new state of the filesystem tree, called a 
revision.



How working copies track the repository

Working copy status svn commit svn update

Unchanged, and current Do nothing Do nothing

Locally changed, and 
current

Push changes to 
repository

Do nothing

Unchanged, and out of 
date

Do nothing Pull changes from 
repository

Locally changed, and out 
of date

Fail with an “out-of-date” 
error

Pull changes and merge 
them with local changes. 
If automatic merge does 
not succeed, leave it to 
the user to resolve the 
conflict.

 Updates and commits are separate. Mixed revisions are 
normal and useful in a local copy, but have limitations 
(e.g. deleting an out-of-date file or directory)



Basic work cycle

 In case of doubt
• svn help

 Update your working copy
• svn checkout
• svn update

 Make changes
• svn add
• svn delete
• svn copy
• svn move
• svn mkdir

 Examine your changes
• svn status
• svn diff

 Undo changes
• svn revert

 Resolve conflicts (merge 
others’ changes)
• svn update
• svn resolve

 Commit your changes
• svn commit

Hands-on practice and examples on tutorial repository 



More basic commands

 Examining history
• svn log
• svn diff
• svn cat
• svn ls

 Cleaning up
• svn cleanup
• rm –rf ; rd /s/q

 Other useful commands
• svn annotate
• svn blame
• svn praise
• svn info

Hands-on practice and examples on tutorial repository 



Branching and merging

 Subversion handles branches differently:
• First, Subversion has no internal concept of a branch—it 

knows only how to make copies. When you copy a directory, 
the resultant directory is only a “branch” because you attach 
that meaning to it

• Second, because of this copy mechanism, Subversion's 
branches exist as normal filesystem directories in the 
repository. This is different from other version control 
systems, where branches are typically defined by adding 
extra-dimensional “labels” to collections of files



Creating a branch

 To create a branch you make a copy of the project in 
the repository using the svn copy command.

$ svn copy http://svn.example.com/repos/calc/trunk \
http://svn.example.com/repos/calc/branches/my-calc-branch \
 -m "Creating a private branch of /calc/trunk” 



Basic merging

 Replicating changes from one branch to another is 
performed using various invocations of the svn 
merge command.

 Frequently keeping your branch in sync with trunk 
helps prevent conflicts when it comes time for you to 
fold your changes back into the trunk.
• First ensure that your branch working copy is “clean” (has no 

local changes) and then run:

• svn status and svn diff show what changes were merged. 
Build and test your working copy. Once satisfied, svn 
commit the changes to your branch.

$ svn merge http://svn.example.com/repos/calc/trunk



Merging back to trunk

 When you're ready to merge your branch changes 
back to the trunk:
• Bring your branch in sync with the trunk again
• Obtain a “clean” and up-to-date working copy of trunk

• Build, test, verify your changes, then commit
• Delete the branch

$ svn merge --reintegrate 
http://svn.example.com/repos/calc/branches/my-calc-branch

$ svn delete http://svn.example.com/repos/calc/branches/my-
calc-branch \ -m "Remove my-calc-branch." 



Roll back changes

 An extremely common use for svn merge is to roll 
back a change that has already been committed.

 All you need to do is to specify a reverse difference.

 By using the -r option, you can ask svn merge to 
apply a changeset, or a whole range of changesets, 
to your working copy. In our case of undoing a 
change, we're asking svn merge to apply changeset 
#303 to our working copy backward.

$ svn merge –r 303:302 http://svn.example.com/repos/calc/trunk



Resurrecting deleted items

 The first step is to define exactly which item you're 
trying to resurrect.
• Every object in the repository exists in a sort of two-

dimensional coordinate system. The first coordinate is a 
particular revision tree, and the second coordinate is a path 
within that tree.

– A good strategy is to run svn log --verbose in a directory that 
used to contain your deleted item.

 Copy the exact revision and path “coordinate pair” 
from the repository to your working copy:

$ svn copy http://svn.example.com/repos/calc/trunk/real.c@807 
./real.c 

$ svn cat http://svn.example.com/repos/calc/trunk/real.c@807 > 
./real.c && svn add real.c 



Tags

 A tag is a “snapshot” in time of the project.
 To create a tag, we use svn copy:

 Subversion sees no difference between a tag and a 
branch. Both are just ordinary directories that are 
created by copying. Just as with branches, the only 
reason a copied directory is a “tag” is because users 
have decided to treat it that way.

$ svn copy http://svn.example.com/repos/calc/trunk \
 http://svn.example.com/repos/calc/tags/release-1.0 \
 -m "Tagging the 1.0 release of the 'calc' project."



References

 The red-bean subversion book:
• Version control with Subversion
• Freely available on-line
• http://svnbook.red-bean.com/

 Feel free to try things out in the local subversion 
repository:
• http://kangaroo/repos/

http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/

	Introduction to Subversion
	Agenda
	What is subversion?
	Subversion architecture
	Fundamental problem VCS solve
	Lock-Modify-Unlock solution
	Copy-Modify-Merge solution
	Copy-Modify-Merge solution (2)
	Obtaining a working copy of the repository
	Pushing and pulling changes from repository
	Revisions
	How working copies track the repository
	Basic work cycle
	More basic commands
	Branching and merging
	Creating a branch
	Basic merging
	Merging back to trunk
	Roll back changes
	Resurrecting deleted items
	Tags
	References

